Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 Hydrogen 4-ammoniophenylphosphonate

Kerstin Thiele, Christoph Wagner and Kurt Merzweiler*

Institut für Chemie, Naturwissenschaftliche Fakulät II, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle, Germany

Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

Received 8 December 2011; accepted 22 December 2011

Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.029 ; w R$ factor $=0.063$; data-to-parameter ratio $=16.7$.

The title compound, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NO}_{3} \mathrm{P}$, is isostructural with p arsanilic acid. It exists as the zwitterion $\mathrm{H}_{3} \mathrm{~N}^{+} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PO}_{3} \mathrm{H}^{-}$. In the crystal, molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond bridges, giving a three-dimensional network structure. The strongest hydrogen bonds are formed between adjacent $\mathrm{PO}_{3} \mathrm{H}$ groups with $\mathrm{O} \cdots \mathrm{O}$ distances of 2.577 (2) Å.

Related literature

For the synthesis of 4-aminophenylphosphonic acid, see: Cooper et al. (2006). For the crystal structure of p-arsanilic acid, see: Nuttall \& Hunter (1996). For a description of the TOPOS program, see: Blatov \& Proserpio (2009). For graphset descriptors of hydrogen bonds, see: Bernstein et al. (1995). For tables of bond lengths in organic compounds, see: Allen et al. (1987).

Experimental

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NO}_{3} \mathrm{P}$

$$
M_{r}=173.10
$$

Monoclinic, $P 2_{1}$
$a=7.0967$ (13) A
$Z=2$
$b=6.2911$ (8) \AA
$c=8.4290(13) \AA$
$\beta=100.606(14)^{\circ}$
$V=369.89(10) \AA^{3}$
Mo $K \alpha$ radiation
$\mu=0.33 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
$0.28 \times 0.19 \times 0.06 \mathrm{~mm}$

Data collection

Stoe IPDS 2T diffractometer
2885 measured reflections
1941 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.063$
$S=1.08$
1941 reflections
116 parameters
4 restraints

1801 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 864 Friedel pairs
Flack parameter: 0.13 (8)

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 4 \cdots \mathrm{O} 1^{\text {i }}$	0.95 (3)	1.64 (3)	2.5772 (17)	166 (3)
$\mathrm{N}-\mathrm{H} 1 \cdots \mathrm{O} 2^{\text {ii }}$	0.92 (2)	1.83 (2)	2.7459 (19)	172 (2)
$\mathrm{N}-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {iii }}$	0.93 (2)	1.83 (2)	2.751 (2)	170 (2)
$\mathrm{N}-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {iv }}$	0.91 (2)	1.78 (2)	2.692 (2)	178 (3)

Symmetry codes: (i) $-x, y+\frac{1}{2},-z$; (ii) $-x+1, y-\frac{1}{2},-z+1$; (iii) $-x, y-\frac{1}{2},-z+1$; (iv)
$x, y, z+1$.

Data collection: X-AREA (Stoe \& Cie, 2009); cell refinement: X AREA; data reduction: $X-R E D$ (Stoe \& Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2144).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blatov, V. A. \& Proserpio, D. M. (2009). Acta Cryst. A65, 202-212.
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Cooper, R. J., Camp, P. J., Gordon, R. J., Henderson, D. K., Henry, D. C. R., McNab, H., De Silva, S. S., Tackley, D., Tasker, P. A. \& Wight, P. (2006). Dalton Trans. pp. 2785-2793.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nuttall, R. H. \& Hunter, W. N. (1996). Acta Cryst. C52, 1681-1683.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (2009). X-AREA and X-RED. Stoe \& Cie, Darmstadt, Germany.

supplementary materials

Hydrogen 4-ammoniophenylphosphonate

K. Thiele, C. Wagner and K. Merzweiler

Comment

Compound (I) is isostructural to the corresponding arsenic derivative p-arsanilic acid (Nuttall \& Hunter, 1996). Like in the case of the arsenic derivative, compound (I) exists in the form of zwitter ions $\mathrm{H}_{3} \mathrm{~N}^{+} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PO}_{3} \mathrm{H}^{-}$, i.e. p-ammoniophenylphosphonate. Phosphorus is coordinated nearly tetrahedrally by three O atoms and the carbon atom of the aryl group. The bond lengths between phophorus and the terminal oxygen atoms O 1 and O 2 are found to be shorter $(1.517$ (1) and 1.511 (1) \AA) than the $\mathrm{P}-\mathrm{OH}$ bond $(1.569(1) \AA)$. This is in agreement with the orbservation in p-arsanilic acid with As-O bonds of 1.656 (6), 1.669 (6) and 1.737 (8) \AA. The $\mathrm{C}-\mathrm{N}$ bond legth of 1.465 (2) \AA is essentially the same as in p-arsanilic acid (1.479 (10) \AA). This is a typical value for $\mathrm{C}_{\text {aryl }} \mathrm{NH}_{3}{ }^{+}$distances (Allen et al., 1987).

The zwitterions are linked by two different types of hydrogen bonds (Table 1). The strongest hydrogen bonds are observed in the case of $\mathrm{O}-\mathrm{H} . . \mathrm{O}$ bridges that are formed between adjacing $\mathrm{PO}_{3} \mathrm{H}$ units. Consequently chains with $\mathrm{C} 1,1(4)$ motifs are formed. Additionally there are $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bridges, that are formed between ammonium nitrogen atoms as donors and phosphonate oxygen atoms as acceptors. In this case $\mathrm{C} 1,1(8)$ structural motifs are found (Bernstein et al., 1995).

As a result of the linkage of $\mathrm{NH}_{3}{ }^{+}$and $\mathrm{PO}_{3} \mathrm{H}^{-}$groups by hydrogen bonds puckered 6^{3} nets are formed. A further (covalent) linkage of the $\mathrm{NH}_{3}{ }^{+}$and $\mathrm{PO}_{3} \mathrm{H}^{-}$groups by $\mathrm{C}_{6} \mathrm{H}_{4}$ units, which act as a kind of pillars between the $\mathrm{NH}_{3}{ }^{+}-\mathrm{PO}_{3} \mathrm{H}^{-}$ layers, leads to a three-dimensional network. This network contains O atoms as 3 - c nodes and P and N atoms as 4 - c nodes. According to a topological analysis using TOPOS the three-dimensional net can be described by the Schläfli symbol $\left\{6^{3} \cdot 8^{2} \cdot 10\right\}\left\{6^{3} \cdot 8^{3}\right\}\left\{6^{3}\right\}^{2}$ (Blatov \& Proserpio, 2009).

Experimental

4-aminophenylphosphonic acid was synthesized according to a published procedure by Cooper et al. (2006). Single crystals were obtained by recrystallization from hot water.

Refinement

H atoms bonded to C were placed in calculated positions with a $\mathrm{C}-\mathrm{H}$ distance of $0.95 \AA, U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. H atoms bonded to N were located from difference fourier maps and refined with $\mathrm{N}-\mathrm{H}$ distances fixed in the range of $0.91-0.93$ $\AA, U_{\text {iso }}(\mathrm{H})$ were refined freely. The H atom attached to the phosphonate O atom was located from the difference fourier map and refined freely.

supplementary materials

Figures

Fig. 1. Molecular structure of (I). Thermal ellipsoids are drawn at the 50% probability level.

Fig. 2. Packing diagram of (I) displaying the hydrogen bond network.

Hydrogen 4-ammoniophenylphosphonate

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NO}_{3} \mathrm{P}$
$M_{r}=173.10$

Monoclinic, $P 2_{1}$
Hall symbol: P 2yb
$a=7.0967$ (13) \AA
$b=6.2911$ (8) \AA
$c=8.4290(13) \AA$
$\beta=100.606(14)^{\circ}$
$V=369.89(10) \AA^{3}$
$Z=2$
$F(000)=180$
$D_{\mathrm{x}}=1.554 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$\mu=0.33 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Plate, colourless
$0.28 \times 0.19 \times 0.06 \mathrm{~mm}$

1801 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=29.1^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-8 \rightarrow 8$
$l=-11 \rightarrow 11$
885 measured reflections
1941 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w R\left(F^{2}\right)=0.063$
$S=1.08$
1941 reflections
116 parameters
4 restraints
Primary atom site location: structure-invariant direct methods
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0348 P)^{2}+0.0226 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=0.30$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.24$ e \AA^{-3}
Absolute structure: Flack (1983), 864 Friedel pairs
Flack parameter: 0.13 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
P	$0.16365(5)$	$0.66144(6)$	$0.17272(4)$	$0.01583(9)$
O 2	$0.33057(17)$	$0.6022(2)$	$0.09314(14)$	$0.0225(3)$
O 1	$-0.02778(17)$	$0.5711(2)$	$0.09090(14)$	$0.0214(3)$
O 3	$0.1487(2)$	$0.9089(2)$	$0.19018(14)$	$0.0243(3)$
H 4	$0.086(5)$	$0.972(5)$	$0.091(4)$	$0.065(10)^{*}$
N	$0.3279(2)$	$0.3192(2)$	$0.85315(16)$	$0.0188(3)$
H 1	$0.446(3)$	$0.256(4)$	$0.878(3)$	$0.030(6)^{*}$
H 2	$0.229(3)$	$0.226(3)$	$0.862(3)$	$0.032(7)^{*}$
H3	$0.332(4)$	$0.417(4)$	$0.933(3)$	$0.040(7)^{*}$
C4	$0.2901(2)$	$0.4096(3)$	$0.69025(18)$	$0.0167(3)$
C6	$0.2847(2)$	$0.3629(3)$	$0.4075(2)$	$0.0196(3)$
H6A	0.3068	0.2772	0.3199	0.024^{*}
C1	$0.2134(2)$	$0.5699(3)$	$0.37885(18)$	$0.0169(3)$
C5	$0.3230(2)$	$0.2830(3)$	$0.56352(19)$	$0.0199(3)$
H5A	0.3713	0.1428	0.5833	0.024^{*}
C3	$0.2190(2)$	$0.6139(3)$	$0.66533(18)$	$0.0197(4)$
H3A	0.1967	0.6983	0.7535	0.024^{*}
C2	$0.1805(2)$	$0.6939(3)$	$0.50798(18)$	$0.0188(4)$
H2A	0.1316	0.8340	0.4889	0.023^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P	$0.01598(16)$	$0.01927(19)$	$0.01195(14)$	$-0.00100(19)$	$0.00178(11)$	$-0.00142(18)$

O2	$0.0202(5)$	$0.0307(8)$	$0.0176(5)$	$-0.0028(5)$	$0.0059(4)$	$-0.0041(4)$
O1	$0.0173(6)$	$0.0266(7)$	$0.0190(5)$	$-0.0008(5)$	$-0.0003(4)$	$-0.0048(5)$
O3	$0.0343(7)$	$0.0199(7)$	$0.0169(6)$	$-0.0007(6)$	$-0.0002(5)$	$0.0001(5)$
N	$0.0178(7)$	$0.0227(9)$	$0.0157(6)$	$0.0003(5)$	$0.0023(5)$	$0.0020(5)$
C4	$0.0135(6)$	$0.0212(8)$	$0.0150(6)$	$-0.0018(6)$	$0.0019(5)$	$0.0016(6)$
C6	$0.0225(8)$	$0.0195(8)$	$0.0169(7)$	$0.0016(6)$	$0.0039(6)$	$-0.0029(6)$
C1	$0.0150(7)$	$0.0214(8)$	$0.0138(7)$	$-0.0021(6)$	$0.0018(5)$	$0.0003(6)$
C5	$0.0206(7)$	$0.0184(8)$	$0.0210(7)$	$0.0024(7)$	$0.0045(6)$	$-0.0002(7)$
C3	$0.0218(7)$	$0.0224(11)$	$0.0155(6)$	$0.0014(6)$	$0.0049(6)$	$-0.0022(6)$
C2	$0.0209(7)$	$0.0174(10)$	$0.0180(7)$	$0.0018(6)$	$0.0033(5)$	$-0.0007(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{P}-\mathrm{O} 2$	$1.5114(13)$
$\mathrm{P}-\mathrm{O} 1$	$1.5165(13)$
$\mathrm{P}-\mathrm{O} 3$	$1.5692(14)$
$\mathrm{P}-\mathrm{C} 1$	$1.8026(16)$
$\mathrm{O} 3-\mathrm{H} 4$	$0.95(3)$
$\mathrm{N}-\mathrm{C} 4$	$1.465(2)$
$\mathrm{N}-\mathrm{H} 1$	$0.918(17)$
$\mathrm{N}-\mathrm{H} 2$	$0.928(17)$
$\mathrm{N}-\mathrm{H} 3$	$0.908(18)$
$\mathrm{C} 4-\mathrm{C} 3$	$1.383(2)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 1$	$114.54(7)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 3$	$110.99(8)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 3$	$110.14(8)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{C} 1$	$108.58(8)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{C} 1$	$108.57(8)$
$\mathrm{O} 3-\mathrm{P}-\mathrm{C} 1$	$103.37(8)$
$\mathrm{P}-\mathrm{O} 3-\mathrm{H} 4$	$111(2)$
$\mathrm{C} 4-\mathrm{N}-\mathrm{H} 1$	$112.4(15)$
$\mathrm{C} 4-\mathrm{N}-\mathrm{H} 2$	$108.1(15)$
$\mathrm{H} 1-\mathrm{N}-\mathrm{H} 2$	$112(2)$
$\mathrm{C} 4-\mathrm{N}-\mathrm{H} 3$	$114.3(18)$
$\mathrm{H} 1-\mathrm{N}-\mathrm{H} 3$	$103(2)$
$\mathrm{H} 2-\mathrm{N}-\mathrm{H} 3$	$107(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$121.71(15)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N}$	$120.13(15)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N}$	$118.15(16)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$-0.3(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1-\mathrm{P}$	$-179.11(13)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{C} 1-\mathrm{C} 2$	$135.65(14)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{C} 1-\mathrm{C} 2$	$-99.23(15)$
$\mathrm{O} 3-\mathrm{P}-\mathrm{C} 1-\mathrm{C} 2$	$17.73(16)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{C} 1-\mathrm{C} 6$	$-45.59(15)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{C} 1-\mathrm{C} 6$	$79.53(14)$
$\mathrm{O} 3-\mathrm{P}-\mathrm{C} 1-\mathrm{C} 6$	$-163.52(13)$

$\mathrm{C} 4-\mathrm{C} 5$	$1.386(2)$
$\mathrm{C} 6-\mathrm{C} 5$	$1.387(2)$
$\mathrm{C} 6-\mathrm{C} 1$	$1.402(3)$
$\mathrm{C} 6-\mathrm{H} 6 A$	0.9500
$\mathrm{C} 1-\mathrm{C} 2$	$1.393(2)$
C5-H5A	0.9500
C3-C2	$1.398(2)$
C3-H3A	0.9500
C2-H2A	0.9500

120.08 (16)
120.0
120.0
119.51 (15)
122.87 (14)
117.60 (12)
119.41 (17)
120.3
120.3
118.74 (15)
120.6
120.6
120.55 (16)
119.7
119.7
0.3 (2)
178.67 (16)
0.0 (3)
-0.3 (2)
-178.62 (14)
0.3 (2)
179.06 (13)
0.0 (2)

supplementary materials

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 4 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.95(3)$	$1.64(3)$	$2.5772(17)$	$166(3)$
$\mathrm{N} — \mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.92(2)$	$1.83(2)$	$2.7459(19)$	$172(2)$
$\mathrm{N} — \mathrm{H} 2 \cdots \mathrm{O} 1^{\text {iii }}$	$0.93(2)$	$1.83(2)$	$2.751(2)$	$170(2)$
$\mathrm{N} — \mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{iv}}$	$0.91(2)$	$1.78(2)$	$2.692(2)$	$178(3)$
Symmetry codes: (i) $-x, y+1 / 2,-z ;($ ii $)-x+1, y-1 / 2,-z+1 ;$ (iii) $-x, y-1 / 2,-z+1 ;$ (iv) $x, y, z+1$.				

supplementary materials

Fig. 1

Fig. 2

